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Abstract—The recognized harmonic buckling modes for the elastic axially-loaded cylinder are by
nature symmetric, equal and opposite amplitudes giving equal energy levels. On the other hand, in
combination they account for considerable asymmetry, inwards deflection being fundamentally
different from outwards; this asymmetry is also apparent in the underlying differential equations,
and in the final large-deflection Yoshimura pattern. Taking the view that underlying symmetries
are closely linked to the form of bifurcation experienced on buckling, and hence to the gross
instability of the phenomenon, the paper thus explores a classic problem in a new light. The well-
known Donnell equations are first employed, the analysis being neatly written in terms of the two
variables radial displacement w and stress function ®. An extension is then presented, derived from
the full strain—displacement equations appropriate to genuinely large deflections. This makes use
of a suite of computer programs, written for a small micro, which handle the required manipulations
of multiplication and integration of harmonic functions in algebraic rather than numerical fashion.

1. INTRODUCTION

The thin cylinder under axial load is one of the classic bifurcation problems of elastic
structures. The importance in design, the inherent complexity, and the severe instability,
combine to give it a special significance. It has been the subject of innumerable different
theoretical approaches, yet significant questions remain[1]. Under such circumstances it
seems sensible to extend the range of interest beyond just that of mechanics, taking into
account, where possible, recent developments in applied mathematics. To some extent this
is the aim here. A new computerized analytical scheme is also introduced based on general
stability theory[2, 3], working from the full, as well as the better-known Donnell, membrane
strain—displacement relations. In the present work the effects of imperfections are ignored,
although the close link between the bifurcational response of a perfect system and imper-
fection-sensitivity provides a clear way forward.

The historical developments are well known. The early paper of Donnell[4] was the
first to draw attention to the important interactive effects which are so closely associated
with the extreme instability of the axially-loaded cylinder. von Karman and Tsien{5] were
also instrumental in exploring the nature of the instability ; in focusing on shell curvature,
their work leads naturally to an examination of the different roles played by quadratic,
cubic and quartic terms of energy. The next significant step came from Koiter[6}, who saw
the problem in the modern bifurcational context, introducing the concept of imperfection-
sensitivity by exploring initial perturbations from an ideal state; this anticipated the later
development of “universal unfolding”[7]. The approach initiated by Donnell continued
with later investigators adding increasingly more harmonic modes to the Rayleigh-Ritz
description for w[8, 9]. This finished up with Hoff e al.[10] who effectively demolished the
search for the “‘minimum post-buckling load” by showing that the predicted minimum load
approached zero with decreasing shell thickness.

Meanwhile a number of workers have contributed significantly in other ways. Croll[11]
associates the destabilization and subsequent restabilization of cubic and quartic energy
terms with a particular (stabilizing) quadratic term, and thus gets results from a linear
eigenvalue study that compare well with experiment. Alternatively, Calladine[1] draws this
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complex nonlinear problem into his general framework for shells, pin-pointing the same
modal interactions that we find from symmetry considerations below. Much work has been
donc on the effects of imperfections. Koiter’s second important contribution was to feed
an imperfection into an axi-symmetric buckling mode, studying the bifurcations into
the non-symmetric modes thus produced[12]; this provided more realistic predictions of
failure loads for imperfections of finite size than earlier asymptotic approaches. Hansen{[13]
extended Koiter’s classic formulation[6] to five separate imperfection forms. More prac-
tically, interest has recently centered on the development of international imperfection data
banks, built from careful experimental study world-wide (see [14] for example). We note
also the theoretical and experimental work conducted by the Centres for Marine Technology
at London and elsewhere (see {15, 16] for example). A glance at the proceedings of the
latest IUTAM Symposium on structural collapse gives an indication of the significance of
the cylindrical form to both theory and practice[17].

Here our system is as idealized as possible, being an infinitely long, thin cylindrical
shell, imperfection free, restrained against overall buckling as a column. We concentrate
on the initial post-buckling, examining bifurcations from the linear fundamental equilibrium
path which represents pure squash and dilation. The classical buckling modes are axi-
symmetric and non-symmetric harmonic functions, and interest focusses on a pivotal
interaction between two typical modes, one axi-symmetric and the other non-symmetric;
this is seen to have a strong symmetry-breaking effect on the topological form of the
underlying potential energy function. The need to consider boundary conditions at the ends
of the cylinder, which become more significant as the length decreases, is avoided ; this
complicates the issue by making the fundamental path nonlinear, and obscures the inter-
esting topology of the interaction.

Briefly, the argument is as follows[18]. Cylinder buckling, when measured in terms of
radial displacement w, carries an underlying asymmetry, inwards being fundamentally
different from outwards. But each of the buckling modes is symmetric in its own right,
being harmonic both axially and circumferentially ; equal and opposite amplitudes give
identical energy levels. The only possible exception for a finite length shell is an axi-
symmetric mode, and if this should have an even number of longitudinal half-waves (the
limiting case as length approaches infinity) then it also is symmetric, guaranteed by sym-
metry about the half-length. It is only by combining that the modes can satisfy the required
asymmetry, and this coupled with the fact that they can have the same or similar critical
loads makes mode interaction inevitable. It should be noted that the final deformed shape,
the well-known Yoshimura or diamond pattern, is profoundly asymmetric, being cir-
cumferentially polygonal and impossible to reverse.

Modern applied mathematics has only recently recognized the importance of sym-
metries which appear in the modes but not in the final deformed shape and thus not in the
underlying governing differential equation[18, 19]. These are referred to as “hidden” and
“subtle” symmetries since, in the interests of rigour, mathematicians are more likely to treat
problems as continuous than discrete. Their presence can, however, radically alter the
classification of the initial buckling phenomenon, and it is clear that the deeper under-
standing comes from considering the modes both separately and in combination. It is also
the case that, in many well-known structural examples, it is not the modal symmetries but
the underlying asymmetry that is less immediately obvious; we see this in the Shanley
model{20].

Perturbation analysis based onl such symmetry properties turns out to be quite different
in character from conventional procedures[21], as we show here for the cylinder problem
using Rayleigh—Ritz modelling. To carry this out efficiently, a suite of reduction programs
has been written in Pascal and implemented on a microcomputer. The scheme employs
codified integer variables rather than real numbers to maintain 100% accuracy. Routines
are developed to determine systematically the u and v forms for an input w, differentiate
appropriately for the strains, and multiply and integrate for the total energy, which is then
output as a stream of integer numbers. Operating on this, the general theory of elastic
stability[2] together with the new procedures[3] then gives equilibrium paths which are
directly plotted. The analytical scheme is readily adaptable to other structural problems.
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2. FORMULATION

A very general treatment for the classical nonlinear buckling of the (infinitely long)
cylinder under axial load can be initiated by substituting the following expansions for radial,
longitudinal and tangential displacement,
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into the full strain—displacement relations on the middle-surface of the thin elastic cylinder[6,
10, 22),
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where 2/ is the sample length of the cylinder (one half-wave longitudinally in ¢,) and R is
the radius. We note that these equations are developed from the definition of strain as
(1/2) x [change in (length)?)/(original length)?[22], rather than the more usual, change in
length/original length. As the value of strain approaches zero the two definitions coincide,
so the former can be taken for the small strains of interest here; it leads to considerable
reduction in complexity, Pythagorean square roots being eliminated, and makes the devel-
opment of extended equations at least possible. An alternative, although they may miss

certain relevant quartic energy terms, is to take the familiar reduced strain—displacement
relations attributed to Donnell[4],
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These are substituted into the standard strain energy of stretching expression[23],

W=i~ ! 2nR.s+.e+2vss+( )2 dx dy 4)
S T P * 2 ’

to give the membrane energy in terms of the generalized coordinates ¢, b, and ¢, We note
that, substituting into the standard bending cnergy expression,
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generates only quadratic cnergy terms. It is thus clear that the profoundly nonlinear effects
of cylinder buckling are due to the rapidly adjusting membrane state in the neutral surface
of the shell. The work done by the axial load P is simply,

AU
W, = P‘[ a_u dx = 2PIB, (6)
o Ox

and the total potential energy of the system (structure plus load) is given by,
V=Ws+W;—W,. M-

Compared with the extended formulation, the use of the Donnell equations means
considerable savings in analytical effort. It is well known that, for the reduced form of eqns
(3), the » and v displacements can neatly be replaced by a corresponding stress function,
which appears linearly in the associated compatibility equation and thus can be eliminated
completely ; the problem is then quickly reduced to one in w alone. An alternative is to
eliminate the » and v contributions as passive coordinates{2, 24], which involves greater
analytical effort but is applicable also (in an asymptotic sense) to the extended equations.
We shall see both reductions later.

Analysis proceeds as follows. First the fundamental path representing the pure dilation,
Qf(P), and compression, B5(P), of the cylinder is removed by using incremental coordinates
g0 and b, measured from the path and defined by,

Qo = Q4(P)+qq0, By = Bi(P)+b,, (8

P being the applied load. We note that, should the full formulation of (2) be adopted, the
fundamental path turns out to be mildly nonlinear. This effect is introduced by the unusual
definition of strain discussed above, and for the small strains relevant here is slight and can
be ignored.

Before the elimination of the u and v contributions, either by stress function or passive
coordinates, the potential function ¥ is non-diagonalized, a direct result of the w/R term
in ¢, of the strain—displacement relations; quadratic cross terms of energy thus exist.
However, the non-diagonalization is of a banded form, these cross terms occurring only
when the suffixes of the g, b; or ¢; coordinates match, so,

Vi=0 forisj, ®

subscripts being used to denote indiscriminate partial differentiation with respect to either
g, b; or ¢;, unlike the earlier fuller notation[2, 24, 25]; superscript F, as before, denotes
evaluation on the fundamental path. We note that extra flags need to be carried in a more
detailed analysis to distinguish between u, v or w contributions{26]. The non-diagonalization
leads to the general condition for the non-critical fundamental state,

VE#£0. (10)
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This implics that, unlike in a corresponding plate analysis, the u and ¢ deflections take &
first-order significance, which in turn suggests that quartic energy terms are missing from
the simplified Donnell approach, when deflections of the order necessary to determine the
minimum post-buckling load are present; this can be seen from the form of the non-
diagonalized elimination of passive coordinates equations[2], and was of course recognized
by HofT ¢f «/.[10]. The cffect is examined in Scction S.

The climination of the # and v components is described in both stress function (Section
4) and elimination of passive coordinates (Section 5) terms, beginning with the Donnell
equations and full equations respectively. Subsequent elimination of the incremental dilation
qo as a passive effect is also similarly achieved. However the remaining g; are more of a
problem, as discussed later in Section 6. Not only are there a large number of coincident,
and ncar-coincident, contributing modes at the lowest critical point on the fundamental
path[6], but eliminating ¢, as a passive effect is prone to severe convergence problems[26],
even though this inextensional mode has no axial load term associated with it and thus has
an infinite critical load. It is at this stage that it is rewarding to examine the symmetry
properties of the reduced potential function A(q,, P), i varying between 1 and n, which we
note is by now diagonalized so ¢; represents the buckling modes. Coefficients of a Taylor
expansion about F are determined by either reduction process, up to and including quartic
terms ; for the simplified Donnell formulation the function is truncated at this level, but
under the full formulation it has a tail of higher-order terms.

3. SYMMETRIES

The concepts of symmetry and symmetry-breaking are now seen as being of fun-
damenta! significance in the classification of phenomena (see, for example, Sattinger[27]),
and can be used with good effect to find and focus attention on the important interactive
effects of the early post-buckling regime. We shall here use the concept of “flip invari-
ance”’[19], associated with the question ““does the system take up the same shape, and hence
have the same energy, when modes are reversed to equal and opposite amplitudes?”’ This
complements analysis, by identifying certain modal interactions with significant non-zero
cubic terms, that can then be found directly. We note that symmetry in a mode or com-
bination of modes is a sufficient but not a necessary condition for elimination of an
associated cubic; sometimes a term may be absent although an apparently relevant sym-
metry condition is not satisfied. However by and large the concept is useful, and significantly
reduces the complexity of the initial formulation.

We see that each of the modes represented by the w form of eqn (1) is flip invariant if
considered alone. The top of Fig. 1 shows a portion of circumferential section, at a constant
x value, with ¢ = ny/R say. Clearly, for any chequerboard mode q,, the same deflection
pattern is produced for negative as for positive amplitude, as shown. The fact that this is
true at every section means that the system carries a fundamental symmetry in g, alone,
and rules out terms in g7 in the final potential function[2, 24]. The same holds for the
axially-constant “‘rosette” mode ¢, while the axi-symmetric mode gq,is flip invariant under
the proviso that it carries an even number of half waves longitudinally. Thus no single
mode alone represents a good Rayleigh—-Ritz approximation, since none accommodates the
fundamental underlying asymmetry.

The second and third diagrams of Fig. 1 show the two different symmetry circumstances
that can arise when two modes combine. If a cosine function is added to a cosine harmonic
of odd degree, as shown in the second diagram, then the inwards deflection pattern over
the range n/2 to 3n/2 is repeated outwards over the range 3n/2 to 5n/2. The combination
is then flip invariant, since the same pattern is repeated when both modes are simultaneously
reversed. This means that, although shell geometry dictates that inwards deformation
is fundamentally different from outwards, this particular combination of modes cannot
accommodate the asymmetry. It also means that cross-term cubic energy contributions
from the two modes vanish[2, 24]. We note that the same property of flip invariance is
found for a cosine function combining with both odd and even sine harmonics, although
these interactions are not specifically illustrated.

SAS 20/12-1
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Fig. I. Symmetry properties of modal combinations.

But if the cosine function is added to a cosine harmonic of even degree, as shown in
the third diagram, the combination allows the asymmetry. We see that inwards deflection
is now quite different from outwards, so reversing the modes does not necessarily give the
same energy level. Modes which bear this relation to one another can thus interact pro-
foundly at the cubic level. Considering modes ¢, and ¢, of eqn (1) for instance, the deflection
pattern of the third diagram is found for every section of constant y; here & can be taken
as nx/2l. Regardless of the sign of the longer wavelength amplitude, the steeper-sided
portion which is shown on the right-hand side remains pointing upwards (or outwards),
while the flatter form of the left-hand side remains inwards; this can be seen as a good
first approximation to the polygonal section of the well-known Yoshimura pattern. The
asymmetry leads directly to the significant cubic A, cross-term, and its counterpart in the
circumferential direction to the corresponding term 4%, ,, involving ¢, and q;.

The final diagram of Fig. 1 shows three modes together. Here the symmetric com-
bination of the second diagram interacts with an even cosine harmonic in much the same
way as previously, and asymmetry results. There is thus a significant three-fold interaction
between ¢;, ¢; and ¢s of eqn (1), and an axial counterpart between ¢,, ¢, and g4 The
appearance of cross-term cubics involving three modes at the lowest critical point[6] suggests
that there are many different three-fold interactions which allow the asymmetry. It appears
that, when three modes mix, asymmetry is the rule rather than the exception. This reinforces
the point that multi-mode interaction is an inherent and inescapable part of cylinder
buckling.

The interactive symmetry-breaking effect occurs between any (square or rectangular)
chequerboard mode and its axi-symmetric (or rosette) counterpart, even though critical
loads may not match. The modes having the lowest critical loads are those on the well-
known Koiter half-circle of Fig. 2; this also shows the relation between the wavelengths of
g, and ¢q,, and their positions on the circle. It should be noted that the Koiter circle modes,
although clearly relevant to initial post-buckling of the perfect system, may be superseded
by others when imperfections are present ; the general circle or ellipse in the space of Fig.



Hidden symmetry concepts in the elastic buckling of axially-loaded cylinders 1507

21
circum. wavelength

21
axtal wavelengihn

Diametral Slice

q

21

Fig. 2. The Koiter circle, and one well-known related modal interaction.

2 carries the same symmetries and associated energy terms as the Koiter circle, the only
difference being that critical loads are not necessarily the same. Figure 3 shows the modes
suggested by the asymmetry, those of eqn (1), in the wavelength-related space of Fig. 2, the
Koiter circle being shown as an unbroken line and its circumferential counterpart as a
broken line.

4. DONNELL EQUATIONS

The use of the Airy stress function with the simplified Donnell strain-displacement
relations results in considerable economy of analysis, reducing the number of dependent
variables from three to two. As we shall show, by restricting attention to harmonic variations
in the stress function (apart from a term representing the applied stress), further simpli-
fications are also made possible. We shall first consider a general radial displacement
function w, discussing the relative importance of the various terms, before restricting
attention to a three mode form for w, which is exactly solvable within the restrictions of
the truncated (Rayleigh—Ritz) framework.
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Fig. 3. The modes of eqn (1) in relation to the Koiter circle.
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(a) General analysis
Full details for the introduction of the stress function, fer orthotropic cylindrical shells
with imperfections, can be found in the review article by Thielemann[28]; here we briefly

outline the derivation for the perfect isotropic shell. Introducing the in-plane stress resul-
tants,

Et Et Et
Nx = ”:'v_:(gx'f'»sy)’ Ny = 1‘—&\)—2'(8},4-\’8,), ny = i(_l—_*__v)gxy, (] 1)
we define the stress function @ in the usual way,
R PR 0*d
N, =Et—, =FEt—, N, =~ .
. e N, = Et p ) Et %3y (12)

These identically satisfy the well-known in-plane equilibrium equations,

ON, @N,, N, ON,
=t =0, —~ +5, =0 (13)

Substituting the Donnell strain~displacement relations (3) into (11) and differentiating
appropriately, the following compatibility equation arises,

1 0*w | 8*w &*w Otw
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On the other hand, employing the calculus of variations with respect to w on the total
potential energy (7) yields the following equilibrium equation,
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We see that u and v have now been entirely replaced by ©.

Koiter[12] has discussed the significant differences between these two equations.
Because of the linearity in @, the compatibility equation can symbolically be inverted, and
the subsequent equation solved for @ in terms of w. From eqn (14) we see that this solution
has two additive contributions. The first comes from the linear term in w, and we denote
it by,

1 0w
b -4
A (16)

This is a highly significant term, arising from the initial curvature of the cylinder; it is
responsible both for raising the critical load above the flat plate (zero curvature) limit, and
in interaction with the terms below, for the extreme instability at the critical point. The
second contribution comes from the quadratic terms in w,

*w 9w *w \?
2 __ gAYy Ty
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This restabilizes the cylinder at moderately large deflections, but also interacts with the
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linear contribution to generate destabilizing cubic terms of energy, as is further discussed
below.

Consider a general periodic deflection in w of the form,

w = QR+ w,, cos—2—cos R’ (18)

mnx ny
/

where the first term is the pure dilation Poisson’s ratio effect, and the second term, employing
Einstein’s convention, is a summation over all m, n > 0, but excluding m = n = 0. We see
that the w,,, have replaced the g; of the general theory representation of eqn (1). The solution
to eqn (16) is then simply,

mm\*

21

ma\  (n ]
5+ (3}
Here the leading term represents the non-periodic applied stress, where A = P/Et, and on
its own defines the fundamental equilibrium solution ; its sole contribution is to the work
done by the load, W,. Clearly the amplitudes ¢, are linearly proportional to the cor-
responding w,., amplitudes. In similar manner, ® may be cast in terms of the w modes;

to do so requires that products of cosines be reduced to sums of cosines. This is a straight-
forward procedure, and the result we summarize as,

Ay? @) mnax  ny
- L 4 Im _ A
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where ¢, = — Wpy

(19)

®? = ¢2, cos Tglf cos %, (20)

where the ¢2, are quadratic functions of the w,,,.

Rewriting the membrane energy in terms of the stress function, integrating by parts,
and employing the fact that we use only periodic variations in w, we find that Wy can be
reduced to the simple form,

Et 2 *2zR
0

A similar reduction may be used for the bending energy, to give,

Et] 2l ("2=R
—_— 2.2

while the potential energy of the load can be written,

AE! 2 "2xR ow 2

With the aid of egns (17)-(23), the contributions to the energy can be discussed in a
straightforward manner. We employ the orthogonality properties of harmonic functions,
and introduce the matrix function g,,,, defined by

9oo=4; Gno=9gm=2 form>0; g,,=1 form>0and n>0. (24)
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After dividing by a factor of Et/2, the total potential energy can then be written,

V=Ws+Wy~W,
¢mn tz mn : (n)Z]Z (mn)z
LG o) e () - (G T -5 oafon s

where the summation convention is again employed over m and n.

We recall that the ¢), and @2, are respectively linear and quadratic in the modal
amplitudes of w. Thus the bending energy contributes stabilizing positive quadratic energy
terms, while the work done by the load contributes destabilizing negative quadratic terms
and is responsible for the presence of the bifurcation. The stretching energy has three
separate effects as follows. The ¢}, contribution alone gives rise to stabilizing positive
quadratic terms, the amount of stabilization increasing with cylinder curvature and dis-
appearing in the flat plate limit. Similarly, ¢2, generates positive quartic terms, which
stabilize the cylinder for moderately large deflections. What initiates the highly unstable
behaviour at the critical load is the interactive cross-product between ¢,,, and ¢2,, which
yields cubic terms in the mode amplitudes w,,,. The amount of destabilization is proportional
to the cylinder curvature, again disappearing in the flat plate limit. Thus we have two
opposing tendencies coming from the initial curvature, one a stabilizing influence on the
quadratic terms, increasing the critical load and proportional to (curvature)?, and the
second a highly destabilizing set of cubic terms proportional to the curvature. In the flat
plate limit both effects disappear, and we are left with the stable post-buckling behaviour
associated with quadratic and quartic energy terms.

(b) Three mode analysis

Having discussed the general framework of the Donnell strain—displacement relations,
we now present a three mode Rayleigh~Ritz analysis, employing the stress function. Specifi-
cally, for the reasons described in the earlier section on symmetries, we choose the following
form for w,

2n
+q31 cos

w= QyR+4q,/cos - X s +q,l cos =% Ry

7R (26)

[

which is truncated after the first three terms of eqn (1). As outlined above, we can determine
the associated stress function,
Ay? 2 nx ny

2 [Rl“q"‘h*‘“)(%ﬂ [() <>] U E

R

Pk 2ny 1 4q21 g (nl) ] nx
(0 (L [ 4
(&) &)
2R ,,y 2R
_241q2 [ 2 n } ZQIQS <n 2 (3}1 212
R 7)) T\R

X 4 2ny
X COS 57 cos T 16q2q3{ :’2 cos T cos R 27

®=—




Hidden symmetry concepts in the elastic buckling of axially-loaded cylinders 1511

Substituting eqns (26) and (27) into eqn (25) then gives the potential function,

i

V“EV?MH' ng‘h+ V‘;’;q; A(‘Il+8‘h)+ V?lquqz'*' V?n‘ln‘h

V?mlh'*' V?lzquqﬁ' V?mqfq§+ ngz:‘]z‘h‘*’ V?m‘ll‘lﬂ: (28)

This is a Taylor expansion about the unloaded equilibrium state, represented by superscript
0, the coefficients being given by,
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Here for simplicity we have factored out a common multiplier, as well as introducing the

wavelength parameter §, defined as the ratio of the axial to the circumferential wavelength
of the g, mode,

2in

B=—. (30)

Differentiating with respect to the modal amplitudes g; and setting the results to zero then
gives the three equilibrium equations,

1
(V?1—2A+V?1242+V?13q3+ Vhngi+ 5 V?122q§+iV?133q§+V(I)123q2q3)ql=09
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We see that ¢, = 0 is a valid solution, and bifurcation into g, alone is thus possible.
Also, the absence of a load term (involving A) in the third equation indicates that there is
no critical load associated with ¢, alone, as expected. We can treat the amplitude of ¢, as
known, and solve eqn (31) for the remaining three variables'q 1» §3 and A. Of these, the final
equation can immediately be written,

(Vs +012392)
2V 4+ Vi i3sqi + Viasag3’

gy = — (32)

giving g, directly in terms of ¢,, a consequence of the lack of a load term. The first two
equations then can be written in terms of just g, and A, both linear in A. These reduce
simply to a cubic equation in g7 which can be solved in closed form. Results directly plotted
by computer are presented in Section 6.
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5. FULL EQUATIONS

The success of the stress function approach is entirely due to the simplified Donnell
equations (3), which allow the linearity in ®. Under the full formulation extra nonlinearities
in ¥ and » block this manoeuvre, and we must return to the initial expansions of cgn (1).
The general theory of elastic stability[2, 24, 25] predicts that the extra quartic terms in u
and v will affect some of the coefficients of (29) for example. This means that the Donncli
cqualions arc accurate as far as cubics[6, 12}, but at the quartic level, important for the
restabilization of the post-buckling path, they seem to require refinement. An algorithmic
form of the general theory[24] has recently been written for microcomputers, as described
below, and this presents an ideal opportunity to quantify the effect more completely than
earlier[29].

The algorithm involves a general suite of programs written in Pascal, which determine
the complete potential function up to quartic level, from any input w function and from any
defined set of strain—displacement relations. It is specifically written for microcomputers, in
that energy terms and all other variables are stored simply as integer numbers, systematically
codified so that all information is efficiently retained. This has the advantage of complete
accuracy (within the confincs of the initial assumptions), with no round-off error. Algebraic
manipulation procedures are developed to determine appropriate ¥ and v functions, perform
the required differentiations, multiplications, additions, and integrations, and store, decode
and output the resulting list of terms. The process is directly applicable to the general
cylindrical shell, and can be used, for example, to find coefficients (29), for the full as
opposed to the Donnell formulation. This involves using a second series of routines, which
now concentrates on a particular shell geometry, transforming energy terms to real double
precision numbers and eliminating the « and v contributions as passive coordinates accord-
ing to the general scheme[24] ; here terms which give a slight nonlinearity to the fundamental
path, arising from the unusual strain definition, are ignored. The full suite of programs is
being developed with a view to commercial exploitation ; it provides basic modal infor-
mation accurately and cheaply, for a wide range of structural types and formulations.

6. RESULTS AND DISCUSSION

Figure 4 shows some typical results, obtained in this case from the Donnell equations
and just two modes, g, and g, of eqn (1). Although the final form is liable to contamination
from other modes, this looping pattern of paths is found with regular consistency in both
this and other mode interaction problems[18-21]; we note that it also has been revealed in
the cylinder problem by application of the Lindstedt continuum perturbation technique[30].
It is closely tied to the symmetry properties described above[l8], is topologically quite
robust[19], and seems to typify two-mode interaction in much the same way as the pitchfork
form typifies distinct symmetric bifurcation.

The two comparative plots of Fig. 4, obtained for different values of f, the ratio of
axial to circumferential wavelength, exhibit some interesting features. f = 1 is the well-
known interaction involving two Koiter circle modes, ¢, at the top and ¢, at the extreme
right-hand end (see Fig. 2); § = 1.4 involves another Koiter circle mode, in a less familiar
interaction with its associated g,, the latter having a critical load of about 1.5 times P*<,
the Koiter circle load. It is apparent that the destabilization is stronger in this second case,
cven though the critical loads are ‘well separated. It is thus clear that for the axially-
loaded cylinder, unlike most buckling problems(2, 25), one cannot rely on remoteness
of a potentially-interacting mode on the fundamental path as insurance against severe
destabilizing effects.

This point is reinforced in the plots of Fig. 5, in which the “rosette” mode ¢, is included
so the results correspond to the potential function of eqns (28) and (29). We remember that
q is effectively inextensional with an infinite critical load, and yet for purely geometric
symmetry-breaking reasons its inclusion has a considerable destabilizing effect on the
response. Results are plotted here for § = 1.2, equally distinctive contaminating effects
being obtained for interactions with other f§ values. We see that the topology of the looping
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Fig. 4. Non-dimensionalized load/deflection and load/end-shortening plots for two different two-
mode interactions, together with relative positions in the wavelength-related space of the Koiter
circle.

form is retained, and the destabilization has intensified ; with the addition of ¢,, the post-
buckling path is pulled closer to the fundamental path on the load/end-shortening plot.
Again critical loads on the fundamental path are seen to carry little significance ; here both
modes lie well off the Koiter circle, with critical loads of about 1.3 and 1.7 times PX€, yet
the effective destabilization is certainly as profound as in the examples of Fig. 4. An
appropriate symmetry-breaking imperfection, in purest form a combination of ¢;, ¢, and
g, shapes, would fully round-off the response and give a limit point at a load well below
any of the critical values.

We note that if g; is to be included, it must be as an active rather than a passive
coordinate. Although its critical load is infinite, eliminating it as a passive is only valid over
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Fig. 5. The effect of adding ¢, to a typical g, and ¢, interaction.
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a very small post-buckling range, as demonstrated by Williams{26]. This is because the
elimination scheme takes quartics associated with a passive mode to be less important than
cubics, and in so doing loses the restabilization at the quartic level but retains destabilizing
symmetry-breaking effects. It is thus clear that Rayleigh-Ritz modelling with a limited
number of modes will give a better overall picture than an attempt to include a large number
of (passive) modes in w.

Comparison between Donnell and full formulations can be seen in Table 1, which
juxtaposes the two sets of coefficients for potential function (28) at three representative f
values. We note that the Donnell potential is complete at this level, but the full formulation
will have higher-order terms; no attempt has been made to evaluate these. Plotted results
for B = 1 over the range of practical interest (deflections of the order of the shell thickness)
reveal barely discernible differences, so we conclude that, for modes of about equal wave-
lengths axially and circumferentially, the Donnell strain—displacement equations are
adequate. However as f increases the two sets compare less favourably and the Donnell
results become more suspect; and we note that an axially-long mode has been suggested
by Croll[11] as the possible trigger for the instability. The full algorithm thus provides a
reliable means of checking the post-buckling response for such modes. We note finally
that the full equations suggest a small but negative curvature to the uncoupled (axially-
symmetric) post-buckling path (V$,,, # 0).

7. CONCLUDING REMARKS

Historically, the study of the buckling of long elastic cylinders has been frought with
difficulty. Classical eigenvalue analysis being thoroughly unreliable, attention switched
to imperfection-sensitivity, and to the search for minimum post-buckling loads. Neither
approach has been entirely satisfactory.

The problem, as we have seen, is marked by a profound symmetry-breaking interaction
and destabilization, followed by almost immediate restabilization as the system picks up the
inherent stiffness of a Yoshimura pattern or something like it. It is not enough analytically to
select the mode or modes with minimum critical load on the fundamental path, and
specifically seek associated interactions[1]. Imperfections round off the sharp corners of
Figs 4 and 5 to such an extent that linear eigenvalue results on the fundamental path are
barely relevant. It is necessary somehow to select the appropriate buckling form from a
number of competing candidates, which may not themselves interact in any way, somewhere
on a rapidly descending post-buckling path, finitely far from both the initial critical point

Table 1. Comparison of potential energy coefficients for Donnell and full strain
displacement equations, for fixed R/1 ratio (R/t = 121.1)

8=1,1/R=0.1570 B=5,1/R=0.7854 8=25, 1/R=3.927

Donnell Full Donnell Fuli Donnell Full
V(l)l 1.000 E-2 1.000 E-2 3.454 E-2  3.415 E-2 7.837 E-1 7.759 E-1
ng 8.000 E-2  7.930 E-2 1.000E 0 9.902 E-1 2.500 E1 2.475E1
vg3 4.000 E-2  3.969 E-2 1.000 EO0 9.886 E-1 2.500 E1 2.749E1

v},  4.712E1 4.635E-1 1.987E1 1.924E1 2454 E3 2.382E 3
v{3  3.141 E-1 3.098 E-l 2.323 E-1 2.280 E-1 5.010 £-2 4.931 E-2
v 3701 E0 3.550EO0 1.158BE3 1.09E3 7.229E5 6.874E5
W2 1.026E1 1.010E1 5.784E1 2466 E1 7.772E1 -1.886E 4
{3 9.870E0 9.632E0 3.650 E1 1.065E1 3.935E1 1.402E 4
vli33 1.026E1 9.97E0 3.698E1 3.572E1 3.984E1 3.857E1
333 3.948E1 3.874E1 1.460E2 -1.043E2 1.574E2 -1.52E5
v3,5, 0.000 EO -1.102E-2 0.000 EO -7.791 EO 0.000 EO -4.294 E 3
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and the restabilization marked by the minimum post-buckling load. The minimum load is
known to be an unreliable guide and the present scheme supports the known conclusion[10}],
that it drops to zero as thickness approaches zero.

The study of imperfection-sensitivity must also have been affected by the fact that,
analytically, imperfections are almost always taken as harmonic in form, while they are in
fact more likely to be dimples. It is possible always to extract a harmonic Fourier component
out of a dimple, but this seems rather artificial. An alternative approach is at present actively
being pursued, in which the role of a single harmonic function is taken by a combination
of functions raiscd to somec power. This can model a dimple quite accurately, and the

development of the potential function falls directly into line with our general procedures.
Preliminary results have been most encouraging.
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